首页
注册 | 登录

已知椭圆a2/X2+Y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点得到的菱形的面积为4求椭圆方程

已知椭圆a2/X2+Y2/b2=1(a>b>0)的离心率e=根号3/2,连接椭圆的四个顶点得到的菱形的面积为4求椭圆方程
分类:数学 2017-10-17 共 2 个回复
最佳回复
离心率e=√3/2 设b=x 则 有a^2=b^2+c^2 得a=2x
根据题意知
菱形的面积可写为
2ab=4x*x=4 得x=1 即b=1 a=2
∴方程为x^2/4+y^2=1

类似问题

2020 jeepce.com webmaster#jeepce.com
10 q. 0.013 s.
湘ICP备19005923号